Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

When I use latex(expression) to convert my expression to latex, the latex output is missing a large portion of my expression. See attached maplesheet. I want latex( ) to output the complete expression. What is happening

incomplete_latex_output.mw

restart;
with(plots): Digits:= trunc(evalhf(Digits)); #generally a very efficient setting

# Here we solve a 1D problem in 3 regions. In each region, we have concentration and potential (c,phi) distributions,
# We first solve the unperturbed steady-state problem and then the linearized perturbation problem (which rely on the steady state).
# Each region is defined in x = 0..1, and the regions are connected by interface conditions that connect (c1(1),phi1(1)) to (c2(0),phi2(0))  and (c2(1),phi2(1)) to (c3(0),phi3(0))

Q:=10;   omega:=100;     J0:= 1.95;   # parameters

# The unperturbed steady-state

c1:=1-J0/2*x:               c3:=1-J0/2*(x-1):                   # concentration distributions in region 1 and 3    
c12:= eval(c1,x=1):        c32 := eval(c3,x=0):  
T1:=sqrt(Q^2+4*c12^2):     T3:=sqrt(Q^2+4*c32^2):           # the values of concentrations 1 and 3 at the interfaces with region 2
c21:=(T1-Q)/2:             c23:=(T3-Q)/2:                     # the values of concentration 2 at the interfaces with region 1 and 3 
I0:=fsolve(Q*i0/2/J0*ln((J0*T1-Q*i0)/(J0*T3-Q*i0))=(J0-T1+T3)/2,i0);   # the electrical current 
V:=(I0/J0+1)*ln(c32/c12)+ln((c21+Q)/(c23+Q))+(J0+2*c23-2*c21)/Q;     # the potential drop across the system 
c2:=solve(y-c21+Q*I0/2/J0*ln((Q*I0-Q*J0-2*J0*y)/(Q*I0-Q*J0-2*J0*c21))=-J0/2*x,y):  # concentration distribution in region 2 
phi1:=I0/J0*ln(c1)+V:   phi3:=I0/J0*ln(c3):                         # potential distribution in regions 1 and 3    
phi21:=I0/J0*ln(c12)+V-0.5*ln((c21+Q)/c21):    
phi2:=(2*c21-2*c2+Q*phi21-J0*x)/Q:      # potential distribution in region 2    

# The linearized problem 
# Unknowns: C11,C12,Phi11,Phi12,C21,C22,Phi21,Phi22,C31,C32,Phi31,Phi32,sigma1,sigma2 (sigma1 and sigma2 are constants along x)

#   Equations

# Region 1 Equations 

eq11 := omega*C11(x)-diff(diff(C12(x), x), x) = 0:                            
eqA1 := 2*c1*diff(Phi11(x), x)+2*(diff(phi1, x))*C11(x) = -sigma1: 
eq12 := omega*C12(x)+diff(diff(C11(x), x), x) = 0:                          
eqA2 := 2*c1*diff(Phi12(x), x)+2*(diff(phi1, x))*C12(x)=-sigma2:

 # Region 2 Equations 

eq21 := omega*C21(x)-diff(diff(C22(x), x)+Q/2*diff(Phi22(x), x), x)=0:      
eqB1 := 2*(c2+Q)*diff(Phi21(x), x)+2*(diff(phi2, x))*C21(x)=-sigma1:
eq22 :=  omega*C22(x)+diff(diff(C21(x), x)+Q/2*diff(Phi21(x), x), x) = 0:  
eqB2 := 2*(c2+Q)*diff(Phi22(x), x)+2*(diff(phi2, x))*C22(x)=-sigma2:

# Region 3 Equations 

eq31 := omega*C31(x)-diff(diff(C32(x), x), x)=0:                            
eqC1 := 2*c3*diff(Phi31(x), x)+2*(diff(phi3, x))*C31(x)=-sigma1:
eq32 := omega*C32(x)+diff(diff(C31(x), x), x) = 0:   
eqC2 := 2*c3*diff(Phi32(x), x)+2*(diff(phi3, x))*C32(x)=-sigma2:

EqSys := eq11, eq12, eq21, eq22, eq31, eq32, eqA1, eqA2, eqB1, eqB2, eqC1, eqC2;    # Equations system 

# Boundary conditions 

# Bcs at the outer ends of regions 1 and 3
Bc1 := C11(0) = 0, C12(0) = 0,  C31(1) = 0, C32(1) = 0, Phi11(0)=1, Phi12(0)=0, Phi31(1)=0, Phi32(1)=0:

# ECP continuity at the two interfaces (between region 1 and 2 and between 2 and 3) 
Intf1 := Phi21(0)-Phi11(1)=C11(1)/(eval(c1, x = 1))-C21(0)/(eval(c2, x = 0)+Q),
Phi22(0)-Phi12(1)=C12(1)/(eval(c1, x = 1))-C22(0)/(eval(c2, x = 0)+Q),
Phi21(0)-Phi11(1)=C21(0)/(eval(c2, x = 0))-C11(1)/(eval(c1, x = 1)),
Phi22(0)-Phi12(1)=C22(0)/(eval(c2, x = 0))-C12(1)/(eval(c1, x = 1)),
Phi21(1)-Phi31(0)=C31(0)/(eval(c3, x = 0))-C21(1)/(eval(c2, x = 1)+Q),
Phi22(1)-Phi32(0)=C32(0)/(eval(c3, x = 0))-C22(1)/(eval(c2, x = 1)+Q),
Phi21(1)-Phi31(0)=C21(1)/(eval(c2, x = 1))-C31(0)/(eval(c3, x = 0)),
Phi22(1)-Phi32(0)=C22(1)/(eval(c2, x = 1))-C32(0)/(eval(c3, x = 0)):

# Fluxes  continuity at the two interfaces (between region 1 and 2 and between 2 and 3)
Intf2 := (Q*sigma1+2*Q*D(phi2)(0)*C21(0))/(2*eval(c2, x = 0)+Q) = 2*D(C21)(0)-2*D(C11)(1),
(Q*sigma2+2*Q*D(phi2)(0)*C22(0))/(2*eval(c2, x = 0)+Q) = 2*D(C22)(0)-2*D(C12)(1),
(Q*sigma1+2*Q*D(phi2)(1)*C21(1))/(2*eval(c2, x = 1)+Q) = 2*D(C21)(1)-2*D(C31)(0),
(Q*sigma2+2*Q*D(phi2)(1)*C22(1))/(2*eval(c2, x = 1)+Q) = 2*D(C22)(1)-2*D(C32)(0): 

Bc := Bc1,Intf1,Intf2;

sys := {EqSys,Bc}:

sol1 := dsolve(sys, numeric, method=bvp[midrich],output = procedurelist);
Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system
Sigma1 := subs(sol1, sigma1);
Sigma2 := subs(sol1, sigma2);
Cond := Sigma1(0)+I*Sigma2(0);
ZR := Re(1/Cond);
ZI := Im(1/Cond);
X:=ZR,-ZI;

is work for some equation but sometime is make problem and again make it problem for me where is problem why the denominator of second equation still remain while i want to remove it i times by denominator but still not worked

in my orginal ode i did change the place diff(V(xi),xi)=Omega(xi) maybe make problem ...or not

like this equation but the equation is different

restart

with(PDEtools)

with(plots)

with(plots):

with(DEtools):

undeclare(prime, quiet)

with(LinearAlgebra)

declare(u(x, t), quiet); declare(U(xi), quiet); declare(V(xi), quiet); declare(Omega(xi), quiet)

ode := -(8*(1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1]))*V(xi)*(diff(Omega(xi), xi))+(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*Omega(xi)^2+8*w^2*(-alpha[4]*V(xi)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*V(xi)-k)*alpha[2]*V(xi)^2 = 0

-8*(1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1])*V(xi)*(diff(Omega(xi), xi))+(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*Omega(xi)^2+8*w^2*(-alpha[4]*V(xi)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*V(xi)-k)*alpha[2]*V(xi)^2 = 0

(1)

NULL

raw := DEtools[convertsys]({ode}, {}, Omega(xi), xi, s, QP, QP)[1..2];

[[QP[1] = -(1/8)*(-(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*s[1]^2-8*w^2*(-alpha[4]*V(xi)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*V(xi)-k)*alpha[2]*V(xi)^2)/((1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1])*V(xi))], [s[1] = Omega(xi)]]

(2)

Extract the denominator and scale the right hand sides by it

den:=denom(eval(QP[2],raw[1]));
raw_eta:=map(q->rhs(q)*den,raw[1]);

1

 

[-(1/8)*(-(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*s[1]^2-8*w^2*(-alpha[4]*V(xi)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*V(xi)-k)*alpha[2]*V(xi)^2)/((1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1])*V(xi))]

(3)

Back to the real transformed variables, which are now in terms of eta.

rhs_eta := eval(raw_eta, {s[1] = phi(eta), s[2] = y(eta)})

[2*y(eta)*(4*k^2*alpha[1]^2+2*w^2*alpha[1]*alpha[2]-4*k*alpha[1]+1)*phi(eta), -(1/4)*(-(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*y(eta)^2-8*w^2*(-alpha[4]*phi(eta)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*phi(eta)-k)*alpha[2]*phi(eta)^2)*(4*k^2*alpha[1]^2+2*w^2*alpha[1]*alpha[2]-4*k*alpha[1]+1)/(1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1])]

(4)

Find equilibrium points - one is at the origin; the others are a complicated mess.

equilibria := [solve(rhs_eta, {phi(eta), y(eta)}, explicit)]; nops(%)

3

(5)

Eq 9.

de1 := diff(phi(eta), eta) = rhs_eta[1]; de2 := diff(y(eta), eta) = rhs_eta[2]

diff(phi(eta), eta) = 2*y(eta)*(4*k^2*alpha[1]^2+2*w^2*alpha[1]*alpha[2]-4*k*alpha[1]+1)*phi(eta)

 

diff(y(eta), eta) = -(1/4)*(-(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*y(eta)^2-8*w^2*(-alpha[4]*phi(eta)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*phi(eta)-k)*alpha[2]*phi(eta)^2)*(4*k^2*alpha[1]^2+2*w^2*alpha[1]*alpha[2]-4*k*alpha[1]+1)/(1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1])

(6)

PDEtools:-ConservedCurrents({de1, de2}, [phi(eta), y(eta)]); P1 := -(1/2)*op(1, rhs(op(%)))

[_J[eta](eta, phi(eta), y(eta)) = f__1((1/3)*(2*w^2*alpha[2]*phi(eta)^4*alpha[4]+3*w^2*alpha[2]*phi(eta)^3*alpha[3]-6*(k^2*alpha[1]+(1/2)*w^2*alpha[2]-k)*alpha[2]*w^2*phi(eta)^2+3*((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)*y(eta)^2)/(((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)*phi(eta)), (1/2)*3^(1/2)*Intat(1/((-96*(-(1/3)*w^2*alpha[2]*phi(eta)^4*alpha[4]-(1/2)*w^2*alpha[2]*phi(eta)^3*alpha[3]+(k^2*alpha[1]+(1/2)*w^2*alpha[2]-k)*alpha[2]*w^2*phi(eta)^2-_a*(k^2*alpha[1]+(1/2)*w^2*alpha[2]-(1/3)*_a^2*alpha[4]-(1/2)*_a*alpha[3]-k)*w^2*alpha[2]*phi(eta)-(1/2)*((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)*y(eta)^2)*_a*((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)/phi(eta))^(1/2)*_a), _a = phi(eta))+eta)]

 

-(1/6)*(2*w^2*alpha[2]*phi(eta)^4*alpha[4]+3*w^2*alpha[2]*phi(eta)^3*alpha[3]-6*(k^2*alpha[1]+(1/2)*w^2*alpha[2]-k)*alpha[2]*w^2*phi(eta)^2+3*((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)*y(eta)^2)/(((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)*phi(eta))

(7)

NULL

Download make_system.mw

in here i have 4 equations and i want to find 4 parameter can anyone say where is problem?

NULL

restart

eq1 := S__1 = sqrt((-beta[1]+sqrt(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2))/beta[2]); eq2 := S__2 = (1/2)*sqrt(-(2*(beta[1]+sqrt(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)))/beta[2]); eq3 := S__3 = sqrt(2)*sqrt(chi*(4*chi^2*k^2*p+4*chi^2*w+2*chi*p*beta[1]-p^2*beta[2]))/(4*chi^2); eq4 := T__1 = sqrt(-2*chi*p)/(2*chi); eqs := {eq1, eq2, eq3, eq4}

S__1 = ((-beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2)

 

S__2 = (1/2)*(-2*(beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2)

 

S__3 = (1/4)*2^(1/2)*(chi*(4*chi^2*k^2*p+4*chi^2*w+2*chi*p*beta[1]-p^2*beta[2]))^(1/2)/chi^2

 

T__1 = (1/2)*(-2*chi*p)^(1/2)/chi

 

{S__1 = ((-beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2), S__2 = (1/2)*(-2*(beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2), S__3 = (1/4)*2^(1/2)*(chi*(4*chi^2*k^2*p+4*chi^2*w+2*chi*p*beta[1]-p^2*beta[2]))^(1/2)/chi^2, T__1 = (1/2)*(-2*chi*p)^(1/2)/chi}

(1)

indets(eqs)

{S__1, S__2, S__3, T__1, chi, k, p, w, beta[1], beta[2], (chi*(4*chi^2*k^2*p+4*chi^2*w+2*chi*p*beta[1]-p^2*beta[2]))^(1/2), ((-beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2), (-2*chi*p)^(1/2), (-2*(beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2), (4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2)}

(2)

We have 4 eqns, so choose 2  variables to solve for

eval(eqs, {S__1 = 1, S__2 = 1, S__3 = 1, T__1 = 1, k = 1, p = 1}); sol := solve(%, {chi, w, beta[1], beta[2]})

{1 = ((-beta[1]+(4*w*beta[2]+beta[1]^2+4*beta[2])^(1/2))/beta[2])^(1/2), 1 = (1/2)*(-2*(beta[1]+(4*w*beta[2]+beta[1]^2+4*beta[2])^(1/2))/beta[2])^(1/2), 1 = (1/2)*(-2*chi)^(1/2)/chi, 1 = (1/4)*2^(1/2)*(chi*(4*chi^2*w+4*chi^2+2*chi*beta[1]-beta[2]))^(1/2)/chi^2}

 

(3)
NULL

Download find-parameter.mw

in this equation i can't do phase portrait and visualization and invistagation of thus point are really not easy which i do a lot substitution for do more simplify but still not work, i want to do phase portrait for thus point but the parameter are too much and each time i have to determine my point which behavior have for each point i have to know the jacobian of them and each time i have to change the parameter to be biger or smaller than zero so i have to replace thus point to be something very easy like A or B  but i don't know how to do that i need an expert to help me , i did my best in file but i can't finished

f2.mw

Maplesoft Open Maple Java Programming Interface : Bug Report 1

Subject

-------------------------------------------------------------
FATAL ERROR in native method: Using JNIEnv in non-Java thread
-------------------------------------------------------------

Unexpected and apparently inconsistent threading behaviour.

Perhaps due to default callback semantics ?

Hello Maplesoft Support team,

Environment

* Maple: Maple 2024.2 (build used in our tests) Build ID #18723373
* OS: macOS (Apple Silicon / arm64) Sequoia 15.7.1 32 GB
* uname output from the failing machine: Darwin Mac-Mini.local 24.6.0 Darwin Kernel Version 24.6.0: Mon Aug 11 21:16:30 PDT 2025; root:xnu-11417.140.69.701.11~1/RELEASE_ARM64_T8132 arm64  
* JDK: openjdk 21.0.8 2025-07-15 LTS (Temurin 21.0.8+9)  
 
* Maple Java jars in use:
    * /Library/Frameworks/Maple.framework/Versions/2024/java/jopenmaple.jar
    * /Library/Frameworks/Maple.framework/Versions/2024/java/externalcall.jar
* Native libraries loaded from:
    * /Library/Frameworks/Maple.framework/Versions/2024/bin.APPLE_ARM64_MACOS

Exact java command used to run OpenMapleBug1:

java -Xcheck:jni --enable-native-access=ALL-UNNAMED -Xrs \  
  -cp .:/Library/Frameworks/Maple.framework/Versions/2024/java/jopenmaple.jar:/Library/Frameworks/Maple.framework/Versions/2024/java/externalcall.jar \  
  -Djava.library.path=/Library/Frameworks/Maple.framework/Versions/2024/bin.APPLE_ARM64_MACOS \  
  OpenMapleBug1  

Minimal Java reproducer:

import com.maplesoft.openmaple.*;
import com.maplesoft.externalcall.MapleException;
import java.util.*;

public class OpenMapleBug1
{
    public static void main(String[] args) throws Exception
    {
        String[] mapleArgs = { "java" };

        try
        {
            Engine engine = new Engine(mapleArgs, new EngineCallBacksDefault(), null, null);
            String expr1 = "diff( tan( x )/exp( x ), x );";
            String expr2 = "u_general := sum(B[n] * sin(n*Pi*x/L) * exp(-alpha*(n*Pi/L)^2*t), n=1..infinity);";
            System.out.println("Evaluating: " + expr1);
            engine.evaluate(expr1);
            System.out.println("Evaluating: " + expr2);
            engine.evaluate(expr2);
            System.out.println("Success");
        }
        catch (MapleException e)
        {
            System.out.println("Error: " + e);
            e.printStackTrace();
        }
    }
}

Observed Behaviour

Two calls are made to OpenMaple. The first succeeds:

Evaluating: diff( tan( x )/exp( x ), x );
(1+tan(x)^2)/exp(x)-tan(x)/exp(x)

The second fails (cf. OpenMapleBug2 (which is actually my main line of investigation); also submitted).

Evaluating: u_general := sum(B[n] * sin(n*Pi*x/L) * exp(-alpha*(n*Pi/L)^2*t), n=1..infinity);

FATAL ERROR in native method: Using JNIEnv in non-Java thread
zsh: abort      java -Xcheck:jni --enable-native-access=ALL-UNNAMED -Xrs -cp    OpenMapleBug1

=========================================
Suggested actions for Maplesoft engineers
=========================================

* Reproduce on macOS Apple Silicon using the provided reproducer and command line.
* Check whether this regression is present on other platforms (x86 mac, Linux) and JDK versions.
* Provide a fix for Maple 2024.2 (and Maple 2025.x if applicable).

Thank-you.

 

Maplesoft Open Maple Java Programming Interface : Bug Report 2

Subject

Native crash (SIGSEGV) in libmaple.dylib when evaluating symbolic sum with indexed coefficients (B[n]) — macOS Apple Silicon — Maple 2024.2

Hello Maplesoft Support team,

I’m reporting a native crash (SIGSEGV) inside libmaple.dylib that occurs when evaluating a symbolic sum containing indexed symbolic coefficients (for example B[n]) via the Maple Java Engine API (jopenmaple). The crash aborts the JVM and produces hs_err_pid34602.log. This is available: email me to receive it.. Rewriting the indexed symbol as a function (for example B(n)) avoids the crash, which suggests a native bug in Maple’s handling of indexed symbolic objects during summation/conversion/evaluation.

Please find environment, exact commands, a minimal reproducer, hs_err_pid34602.log (email), and suggested tests and actions below.

Environment

* Maple: Maple 2024.2 (build used in our tests) Build ID #18723373

* OS: macOS (Apple Silicon / arm64) Sequoia 15.7.1 32 GB
    * uname output from the failing machine: Darwin Mac-Mini.local 24.6.0 Darwin Kernel Version 24.6.0: Mon Aug 11 21:16:30 PDT 2025; root:xnu-11417.140.69.701.11~1/RELEASE_ARM64_T8132 arm64  

JDK: openjdk 21.0.8 2025-07-15 LTS
OpenJDK Runtime Environment Temurin-21.0.8+9 (build 21.0.8+9-LTS)
OpenJDK 64-Bit Server VM Temurin-21.0.8+9 (build 21.0.8+9-LTS, mixed mode, sharing)

Maple Java jars in use:
    * /Library/Frameworks/Maple.framework/Versions/2024/java/jopenmaple.jar
    * /Library/Frameworks/Maple.framework/Versions/2024/java/externalcall.jar

Native libraries loaded from:
    * /Library/Frameworks/Maple.framework/Versions/2024/bin.APPLE_ARM64_MACOS

Exact java command used to run MinimalSumTest2:

java -Xcheck:jni --enable-native-access=ALL-UNNAMED -Xrs \  
  -cp .:/Library/Frameworks/Maple.framework/Versions/2024/java/jopenmaple.jar:/Library/Frameworks/Maple.framework/Versions/2024/java/externalcall.jar \  

  -Djava.library.path=/Library/Frameworks/Maple.framework/Versions/2024/bin.APPLE_ARM64_MACOS \  
  MinimalSumTest2  

Note: Adding -Xss100M did not make any apparent difference.


Minimal Java reproducer (attach as MinimalSumTest2.java):

// MinimalSumTest2.java

public class MinimalSumTest2
{
    public static void main(String[] args)
    {
        String[] mapleArgs = new String[] { "java" }; // some versions require this
        com.maplesoft.openmaple.Engine engine = null;
        try
        {
            System.out.println("Creating Engine...");
            engine = new com.maplesoft.openmaple.Engine(
                mapleArgs,
                new com.maplesoft.openmaple.EngineCallBacksDefault(),
                null,
                null
            );

            // assign with ":" to suppress printing (should avoid large marshalled result)
            String assignSuppressed = "u_test := sum(B[n]*sin(n*Pi*x/L)*exp(-alpha*(n*Pi/L)^2*t), n=1..100):";
            System.out.println("Evaluating (suppressed): " + assignSuppressed);
            engine.evaluate(assignSuppressed);
            System.out.println("Assigned (suppressed) OK");

            System.out.println("Done.");
        } catch (Throwable t)
        {
            System.err.println("Unexpected throwable (may be native crash):");
            t.printStackTrace();
            // If a SIGSEGV occurs, JVM may abort before this runs; look for hs_err_pid*.log
        } finally
        {
            // no stop() method available
        }
    }

}

Observed Behavior

* JVM aborts with SIGSEGV in native code (libmaple.dylib). The hs_err log shows frames in:
    * libmaple.dylib : errorJmp(_ThreadLocalData*) / extIsNumeric
    * libjopenmaple.jnilib : newAlgebraic / Java_com_maplesoft_openmaple_Engine_evaluate

* Using B(n) (function form) instead of B[n] or substituting numeric coefficients avoids the crash.

Attached crash evidence

* hs_err_pid34602.log is available: email me to receive it.
* Please use the full hs_err file for diagnostics; it contains native frames, thread state and loaded libraries.

Suggested quick tests to run (please include pass/fail for each):

1. Replace indexed form with function form:
    * B := n -> b^n: u := sum(B(n)*sin(...), n=1..100): — does this crash?
2. Reduce N (small upper bound):
    * sum(B[n]*sin(...), n=1..10): — crash or not?
3. Use a table in place of indexed name: Btab := table():  
4. for k from 1 to 100 do Btab[k] := b || k od:  
5. sum(Btab[n]*sin(...), n=1..100):  
6. Pre-substitute a simple expression for B[n] before summing:
    * sum(subs(B[n]=1/n, B[n]*sin(...)), n=1..100):
7. Try same reproducer on a non-Apple-Silicon mac or Linux (if available) and with JDK 17.

Suggested cause (based on hs_err frames):

* Crash appears to occur in native routines that check numeric-ness / build algebraic objects (functions such as extIsNumeric and newAlgebraic). This indicates a bug in Maple’s native handling/conversion of indexed symbolic objects in sum/convert/evaluate code paths.

Temporary workarounds
* Use function form: B := n -> ... and B(n) in sums rather than B[n].
* Substitute definitions for B[n] before summation (client-side or via subs) so that the sum does not carry an indexed symbolic name into the conversion step.
* Build sums client-side (Java/Clojure) or use explicit truncated numeric sums when possible.

Files to attach (recommended)
* hs_err_pid*.log (full file)
* MinimalSumTest.java (the Java reproducer above)
* README_cmd.txt (contains exact javac and java commands used)
* java_version.txt (output of java --version)
* maplesoft_jars_list.txt (paths to jopenmaple.jar and externalcall.jar used)

=========================================

Suggested actions for Maplesoft engineers
=========================================

* Email me to receive the error log file produced for the crash.
* Reproduce on macOS Apple Silicon using the provided reproducer and command line.
* Inspect handling of indexed name objects inside summation/conversion code paths — particularly code interacting with extIsNumeric, newAlgebraic, and conversion routines invoked by Engine.evaluate.
* Check whether this regression is present on other platforms (x86 mac, Linux) and JDK versions.
* Provide either a patch that prevents this conversion path from dereferencing invalid memory, or return a safe Maple-level error for unsupported symbolic forms.

Thank-you.


 

There seems to be a bug in the round function when using units.

a := 6.25*Unit('mm')``

6.25*Units:-Unit(mm)

(1)

round(a)

6*Units:-Unit(mm)

(2)

b := 1.25

1.25

(3)

round(b)

1

(4)

c := 1.25*Unit('mm')

1.25*Units:-Unit(mm)

(5)

round(c)

Units:-Unit(mm)

(6)

NULL

Download round.mw

I want to ask a question, but I cannot submit it using the link below. I tried several times, but it didn’t work. I wrote it like this, but I didn’t get the desired answer.

http://www.mapleprimes.com/questions/231499-Changing-The-Variables-

NULL

restart:
with(PDEtools):
tr1:={x=xi- lambda*t - delta,u(x,t)=Theta(xi) };


PDE := diff(u(x,t),t) + diff(u(x,t),x) + alpha*u(x,t)^2*diff(u(x,t),x)
      + beta*diff(u(x,t), t, x$2);

ode := dchange(tr1,PDE,[xi,Theta(xi)]);

{x = -lambda*t-delta+xi, u(x, t) = Theta(xi)}

 

diff(u(x, t), t)+diff(u(x, t), x)+alpha*u(x, t)^2*(diff(u(x, t), x))+beta*(diff(diff(diff(u(x, t), t), x), x))

 

diff(Theta(xi), xi)+alpha*Theta(xi)^2*(diff(Theta(xi), xi))

(1)

NULL NULL

Download 963.mw

Hi,

I want to solve the equation shown in the image, along with its given conditions, using Maple and obtain the same results as in the image, but it does not work. Could you please help me?

NULL

restart:
interface(showassumed = 0):


df := diff(w(xi), xi) = rho + eta*w(xi)^2:

 

# Condition (1): rho * eta>0,
assume(rho * eta>0);

w1 := dsolve([df, w(0)=0]);

w(xi) = tan(xi*(rho*eta)^(1/2))*(rho*eta)^(1/2)/eta

(1)
 

 

Download 852.mw

It's possible to carve a hole through a unit cube, without splitting it into pieces, so that another unit cube can pass through that hole.  This is know as the Prince Rupert problem and was first analyzed by John Wallis, a contemporary of Isaac Newton.  Here's what the result looks like:

If your computer can play audio, have a look at  Ruperts Cube with music!

Here is the worksheet that produced the cube and the animation: ruperts-cube.mw

i have out come with different coieficent  i can do by hand one by one seperate them and make them equal to zero but how i can make  list of equation  with leading term is apear  too not just the equation i have to know which related the equation and leading term too, then find unkown coiefficient?

system.mw

i don't know how replace the function which remove the sign of integral even i know the author replaced by sin(t) and t and combined them like the picture but i don't know why my pdes not give me zero 

h-pde-M.mw

Here is a 3D plot of a hemisphere punctured by a cylinder.  I had to think a bit about how to produce this graphics in Maple.  I am posting it here for your amusement, and a challenge for your spare time.

in this pde I have to find R, and already in the paper finded but  in my openion is not correct even when i tested is not give me solution, in some paper like that i finded R variable by finding some condition in pde but i want a coding for arrange that condition for example in pde we have 4 function of t like C(t),B(t),N(t),and E(t) i have to change them for finding R  like exchange C(t)=C(t), B(t)=C(t),N(t)=-C(t),E(t)=E(t) also we can equal them to one too, this is one of the condition how many condition we can have for substitute each on like that and tested for finding R, one of this condition will make help to find that R  like  this paper

but my equation is different is this equation  in below 

i tested the author outcome and not make my pde to zero, also dipersion relation without changing any any function of t is so different and i think he just use the penlevy test variable 6/beta*diff(phi,x) as a tranformation but i think is mistake, so where is problem and how we can find all the condition 

pde-condition.mw

in this function contain another function which contain integral but when i replace is just take some of the function and other function is not acceptable i want ask  there is any way for plotting the function when i substitute all other function, is work for csc,sec,cosh, and for other not work and  infinity sign appear likesome other  like t,sin,cos,tan,tanh,sinh, so on 

 t-plot.mw

1 2 3 4 5 6 7 Last Page 1 of 46